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1 OBJECTIVES

The objective of this research effort was to develop direct numerical simulation (DNS)
and large-eddy simulation (LES) techniques to simulate compressible, non-canonical wall-
bounded flows which are more directly applicable to actual flight vehicles. The data from the
simulations is used to educe information about the organized motions in the flow and how
they are affected by the extra strain rates due to the wall curvature. Also, the data from the
simulations can be used for improvements to the Reynolds stress transport equations and the
two-equation k — € turbulence models for compressibility and curvature effects. Specifically,
the research objectives are the following:

o Develop a high-order compact difference algorithm for solution of the compressible,

Navier-Stokes and energy equations for simulation of spatially evolving three-dimensional
turbulent flow.

¢ Investigate boundary condition compatibility issues and dissipation models for the

higher-order differencing.
o Validate the code for small amplitude disturbances.
o Evaluate subgrid-scale models for wall-bounded compressible flows.

e Compute the turbulent flow over a flat plate at a supersonic Mach number and compare

with incompressible simulations.
e Compute the transitional flow over a concave surface.

o Characterize the nonlinear stages of transition to determine the effects of the extra

strain rates applied by the curved surface.
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2 GOVERNING EQUATIONS

2.1 Governing Equations

The compressible transitional and turbulent flow of an ideal gas is governed by the conti-
nuity, momentum and energy equations. The strongly conservative form of these governing
equations will be solved. The equations can be written as follows, where u; = [u, v, w]T
is the velocity and p, p, T, u, &, and C, are the density, pressure, temperature, viscosity,

thermal conductivity, and specific heat at constant volume respectively:

Op | (Bpur) _
ot * Oz 0 (1)
8 (pux) | O(pusm) 6p o
= - 2
6t t 631 B:ck t 6-’51 ( )
e VotV = — ®
Co ot +C Oz pazk + Ozi nazk + (3)
The viscous stress oy and the viscous dissipation & are defined by
_ 2 Bu,- Buk au,
On = —EﬂaTjé}l +p (-6—21 + 5;) (4)
_ 2 au,- 2 auk 3‘".1 Buk
.¢I’ B __3_#(3_2:,> tH (Bx, + sz) 6:::1 ) (5)
The equation of state is
p = pRT. (6)

The viscosity and thermal conductivity are varied with temperature using Sutherland’s law
for the viscosity and a fourth-order polynomial curve fit to experimental data for the thermal
conductivity. The specific heat at constant volume is assumed constant. The physical domain
(=, y, 2) is mapped to the compufa.tiona.l domain (¢, 7, ¢) to allow for arbitrarily shaped
bodies.

2.2 Favre Filtered Equations

In LES the flow variables are decomposed into a large-scale component and a subgrid-scale

component. The large-scale component is defined by a filtering operation:

3
F(z1,22,23) = /D I1 G: (zi,2)) f (2}, 2}, 2 de, derldz, (1)

=1
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where G; is a filter function in the ith direction and D is the domain of the fluid. Two

commonly used filters are the sharp Fourier cutoff filter, defined in physical space as
Gi(zi,z!) = 2 sinfx (z; — i) /A /= (2 — z7) (i=1,3) (8)
and the Gaussian filter defined as
Gilzinal) = (6/70) "exp[~6(ei —2)* /A (i=13), (9

where A; is proportional to the grid size in the ith direction. For the Fourier cutoff filter
the subgrid scale field contains the velocity due to all the structures with wavenumber |k;| >
7/A;. The Gaussian filter is a more global filter since a wider range of scales contribute to
the subgrid-scale velocity.

Favre filtering is used to decompose the turbulent field: F = F+ F’, where F' is the SGS
part of F and the Favre filter is defined by F = pF [p. The filtering operation is applied to
the governing equations which yields filtered equations for the large eddies:

9p | O(pix) _
6t t azk =0 (10)
8(pix) , O(pixiu)  O8p  Oawm  Omw
o 8zy Oz * Oz + Oz (11)

o) , o OEuT) __ 0 5 8 (6T\_ 00
C ot +C, Oz, p62k+§+3zk "azk Cvazk (12)

P =pRT. (13)

The SGS stress tensor 75 and the SGS heat flux Q; are defined by

T = — Pk — Gyl + uﬁl + uiy + uful) (14)
Qe = p(&T — T + T + i7" + [ T). (15)

2.3 Subgrid-Scale Modeling

The capabilities of two SGS stress models to accurately model wall-bounded, compressible,
turbulent flows are investigated. The SEZHu model and the structure function model are
chosen due to their success in modeling the SGS physics of compressible isotropic turbulence.
A brief description of these models follows.

The SEZHu SGS model was derived by Speziale et al. (1988) for compressible isotropic
turbulence. This model is based on the Favre-filtered equations of motion of an ideal gas.
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Piomelli et al. (1988) has shown that the structure of the subgrid scales depends strongly on
the type of filter used and consistency between the model and filter is necessary for accurate
results. Following the work of Piomelli et al. (1988), only the Smagorinsky portion of the
SEZHu model is used with the Fourier cutoff filter. Hence, the SGS stress model is of the

form
- 1-
ru = (1- %) 208782 I1Y* (8 — 3 5mmba) (16)
and the SGS heat flux is given by
_(1_ v\t [ _COR z2 }/222
Q= (1-ev"/%)p ( o AL 5 (17)

where Sy = (Otir/0zi + Oty /Bz1) /2 is the Favre filtered rate of strain tensor and Iz =
S'm,,S',,,,, is its second invariant. Cp is the compressible Smagorinsky constant, Prr is the
turbulent Prandtl number, and A = (AzAyAz)Y/3. The first term in these equations rep-
resents a Van Driest wall damping and y* is the distance from the wall nondimensionalized
by wall shear velocity and kinematic viscosity.

The second SGS model is the structure function model (Comte et al. 1990) which is based
on the concept of spectral eddy viscosity and spectral eddy diffusivity. A local kinetic energy
spectrum is calculated in terms of the local second—order velocity structure function. The

structure function model is of the following form for the SGS shear stress and heat flux:

Tl = (1 — e—y+/25)2 CRﬁAVFz (5, At,t) X (S.'kl - ';'gmmskl) (18)

= (1 _ ~v*/25)? _CRpA = _.‘2_1..1_
Qk (1 e ) ( Pro Fg(z,Az,t)azk (19)

where

Fo = (|li(,1) - (& + 7)) (20)

lifll=as °

Again, Van Driest wall damping is applied.
3 NUMERICAL APPROACH

A large extent of this research effort has been directed towards development of the de-
velopment of the high-order compact difference simulation code for generalized curvilinear
coordinates, as outlined in the objectives. Towards this end, several studies were performed
to determine the most appropriate numerical techniques. The numerical algorithm and sev-

eral key numerical issues are highlighted below, including application to specific test cases.
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For the time integration scheme, the second-order Runge-Kutta methods by Jameson
(1980), the low storage third-order Runge-Kutta methods by Wray (1991) and Williamson
(1980), and the classical fourth-order Runge-Kutta method have been evaluated. The third-
and fourth-order schemes were tested for a simple ordinary differential equation and the pre-
dicted third- or fourth-order accuracy was achieved. The third-order Runge-Kutta method
requires fewer computations and less storage than the fourth-order Runge-Kutta method

and is being used in the full simulations.

For the spatial differencing procedure, a second-order finite volume approach and fourth-
order or sixth-order compact differences are available. A generalized coordinate system is
being used to allow for arbitrarily shaped bodies. A cell-centered scheme is employed for
the second-order finite volume method. The compact difference scheme is applied at the
nodes, not the cell centers, since higher order interpolation schemes would be required for a

cell-centered scheme, resulting in many additional calculations.

Both the fourth-order and sixth-order compact differences form a tridiagonal system of
equations. The difference approximations for the near boundary nodes are necessarily one-
sided and consistent with the overall compact difference scheme. Following the work of
Lele (1990), Carpenter (1991) and Pruett(1993), the following schemes are employed at the
boundaries. For the fourth-order compact differences, a 3-4-3 stencil is used, which repre-
sents fourth-order differencing in the interior of the mesh and third-order at the boundaries.
For the sixth-order compact differences, either a 3,4-6-4,3 stencil or a 5,5-6-5,5 stencil is
used in which sixth order compact differences are used in the interior. For the first method,
third-order compact differences are used at the boundaries and fourth-order differences are
used at the first interior points. Similarly, the second sixth-order method employs fifth-
order differences at the boundaries and the first interior points. The code is programmed so
that either set of boundary conditions can be used for the sixth-order compact differences.
However, Pruett has shown that stability is maintained when the 5,5-6-5,5 scheme is used
in the streamwise direction and the 3,4-6-4,3 scheme is used in the wall-normal direction.
Therefore, the boundary values are formally fifth-order accurate in the streamwise direction
since the points are equally spaced. However, only third-order accuracy is maintained in the

wall-normal direction where the grid points are tightly clustered or highly stretched.
The spatial evolution of the transitional and turbulent flowfield is simulated since this is

the only physically representative condition for complex geometries. Inflow-outflow boundary
conditions are employed. At the inflow boundary, the flow is assumed to be a uniform
freestream flow is the leading edge of the body is simulated; otherwise a boundary layer
profile is used at the inflow boundary. At the outflow and outer boundaries, characteristic

boundary conditions are employed.
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In the spanwise direction, periodic boundary conditions are employed in the finite dif-
ference or compact difference framework. At the wall, no-slip conditions are imposed, the
.tempera.ture is calculated from an adiabatic wall condition, and either a zero-normal gradient
in the pressure is assumed or continuity is imposed at the wall. The equation of state is also
employed to calculate either the density or pressure.

A fourth-order artificial dissipation operator has been added to the second-order finite-
volume formulation to damp spurious oscillations. A spatial filter was developed for near-
boundary damping. No dissipation operator has yet been added to the higher-order compact
differencing scheme, but a sixth-order filtering is planned so that reasonable grids can be
used.

Disturbances can be introduced into the computational domain either through a suc-

'tion/blowing strip on the wall or as a distributed function at the inflow boundary.

4 NUMERICAL VALIDATIONS

4.1 Burger’s Equation

Both the fourth-order compact differences and second-order finite differences for the spa-
tial derivatives have been tested for a model problem. A comparison of fourth-order com-
pact differencing techniques with second-order finite difference techniques was performed for
Burger’s equation. It was found that the boundary condition treatment has a significant im-
pact on the order of accuracy of the numerical solution. The behavior of compact difference
techniques is similar to that of spectral methods in that a larger region of the flowfield is
affected by the boundary condition treatment and the error distribution is more global. The
errors are more local to regions of high gradients in the finite-difference solution. In addition,
round-off errors can become larger than the truncation error for small grids and thus reduce
the effectiveness of the higher-order differencing. As compact differencing techniques have
additional CPU requirements, there may not be a payoff for a very fine grid. The results
from the analysis of Burger’s equation have provided useful information for the complete
Navier-Stokes equations and highlights of some of the test cases are given below.

The first analysis is for the linear, steady, viscous solution of Burger’s equation with

Dirichlet boundary conditions imposed:

Ou 1 6%
c— =

bz ~ Te b (21)
u(0)=1, w(1)=0, e¢=1, Re=10.

Figure 1 shows the rms error in the calculated solution when compared with the exact

solution of Burger’s equation using standard second-order central differences and fourth-
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order compact differences. The slope of the curves verify the solution accuracy, except at
the smaller step sizes when the round-off error overtakes the truncation error. Figure 2
shows the spatial distribution of the error for four different size uniform grids. The error
in the second-order finite difference solution is very large at the boundary, but decreases
for the smaller step sizes as expected (imax indicates the number of grid points used in
the computation). The error in the fourth-order compact difference solution (with a fourth-
order one-sided difference for the first derivative and a third-order one-sided difference for
the second derivative at the boundary) does not change as the grid size is reduced since the
round-off error is higher than the truncation error for these smaller grids.

A second analysis was performed to determine the effects of periodic boundary conditions
for the unsteady, viscous Burger’s equation (¢ = 1 and Re = 6283). The error analysis is
shown in Figure 3 for both the finite difference and compact difference solutions. The results
display that second- and fourth-order accuracy is achieved. Unlike the previous case, no error
is introduced at the boundaries. As periodic boundary conditions are being employed in the
spanwise direction in the full simulation code, this study lends confidence to the capabilities
of the differencing techniques employed.

Another analysis of the steady, nonlinear, viscous Burger’s equation, which more closely
models the characteristics of the Navier-Stokes equations, was performed. The same con-
ditions were used as presented in the first example, but with ¢ = u. The error is shown
in Figure 4. The finite difference solution shows second-order accuracy, while the compact
difference solution only maintains a 3.5 order accurate solution as the step size is reduced.
The accuracy of the compact difference solution was degraded from fourth-order because the
the third-order boundary condition for the second derivative influenced the flow more for the
nonlinear Burger’s equation. For very coarse grids, the accuracy of the compact difference
solution is no better than the second-order finite difference solution.

The final example of the analysis of Burger’s equation is for the unsteady, combined
nonlinear, viscous case:

bu | 18
ot . Redz?
u(0,t) =1, z(1,t) =0, c=0.5, b= -1, Re =10.

(c+du) % = (22)

The solution of this equation is shown in Figure 5 and the error distribution is shown in
Figure 6. Of particular interest is the more localized concentration of error for the finite
difference solution, whereas the errors in the compact difference solution are spread over a
larger portion of the domain, similar to the error distributions seen in spectral methods. A
grid density study showed that second-order accuracy was achieved for the finite difference
solution and fourth-order accuracy for the compact difference solution. This test case lends
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confidence to the higher-order differencing techniques used in the calculation of flows with
large gradients, as will be present in the full simulations of supersonic turbulent flow over a
curved surface.

The results presented for Burger’s equation were obtained on a uniform grid. However,
the grid can play a large role in the overall accuracy of the simulation. Special care is taken
to preserve the higher-order accuracy of the numerical scheme. The grid generation for the
generalized code is accomplished through the MACGS grid generation system developed
by the Computational Fluid Dynamics Group at McDonnell Douglas Aerospace. The grid
stretching is performed at a small, constant rate, as this yields smaller errors than if a tanh
stretching were used. As Cain (1992) has pointed out, when using second- and higher-order
schemes to calculate the metrics, the metrics will be exact on this type of grid. Also, Cain
has determined maximum stretching rates based on the one-dimensional wave equation. If
the stretching is too large, the waves can propagate in the wrong direction. The metric
calculation is implemented to be consistent with the order of accuracy of the flow solver

scheme.

4.2 Mean Flow

Direct or large-eddy simulation methods require very accurate resolution of the underlying
mean flow to capture the physics of transitional or turbulent flows. Great care has been taken
to insure that the laminar mean flow solutions are of high accuracy. Comparison has been
made between the results of the code developed in this work and the compressible similarity
solution. The computational domain did not contain the leading edge of the plate and the
compressible similarity solution was used as an inflow condition and to initialize the flowfield.
A comparison between the compressible similarity solution and the newly developed code
for a M, = 3 supersonic boundary layer is shown in Figure 7 for the streamwise u velocity,
the normal v velocity, and the temperature T. Excellent agreement is obtained, particularly

for the normal v velocity.

5 SIMULATION RESULTS
5.1 Large-Eddy Simulation of Supersonic Boundary Layers

An investigation of SGS models for use in compressible wall bounded flows was performed
using a temporal LES code, CMPTBL (CoMPressible, Temporal, Boundary Layer), devel-
oped by Pruett and Zang (1992). This code was used to perform the first LES of supersonic,
wall-bounded turbulent flow (Kral and Zang, 1992). However, there several outstanding

issues concerning SGS models for supersonic boundary layers arose. This work was therefore
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continued in a cooperative effort with Dr. Thomas A. Zang at NASA Langley Research Cen-
ter. As the temporal code requires much less CPU time (due to the streamwise periodicity
approximation) it provided a good framework to examine key numerical issues while the fully
spatial code was under development. The subgrid-scale viscosity can behave similar to an
artificial viscosity operator for central differencing codes. As there is no artificial viscosity
or upwinding technique in CMPTBL, the values of the compressible constant in the SGS
models were set high to provide damping of unphysical oscillations. Since the earlier work by
Kral and Zang (1992), Zang (1992) has made several modifications that improved stability
and provided for more physical damping. These modifications included treating the viscous
terms directly as second derivatives instead of products of first derivatives. In the previous
work, the differencing of the product of the first derivatives did not damp the high frequency
waves. This modification provided for a much more stable algorithm for temporal simula-
tions of transition with no affect on the solution. In addition, boundary condition upgrades

for the sixth-order compact differences used in the wall normal direction were made.

Therefore, the earlier findings on the SGS models were re-examined, especially the in-
fluence of the compressible constant. Two SGS models with compressible formulations
were evaluated. One model is a compressible formulation of the Smagorinsky model due
to Speziale et al. (1988) and the second model is the structure function model of Comte et
al. (1990). Significant differences were observed in the magnitude and shape of the fluctuat-
ing components using the two different SGS models. Figure 8 shows a comparison between
results of a LES with the compressible Smagorinsky SGS model at M,, = 4.5 and Rey = 5400
using the earlier version of the code (labeled 8/91 on the plot) and the current version (la-
beled 7/92 on the plot). Also shown is a comparison with the experimental data of Coles
(1953) at this Mach number and Res. All simulations presented here were run with 32
Fourier modes in the streamwise direction, 18 Fourier modes in the half-span (with spanwise
symmetry assumed), and 72 points in the wall-normal direction using sixth-order compact
differencing. The same Smagorinsky constant was used in both cases, ¢, = 0.15. Differences

in the two simulations are most evident in the near wall region for the first derivative of the

’
rms*

mean streamwise velocity and for The differences between these two cases were not
expected to be significant. The intention was to attempt to lower ¢, with the more stable
numerical scheme implemented for the second derivatives, as the constant was set high due
to the need for artificial dissipation. With the modifications, ¢, was lowered by 50% to 0.075.
Thus the need for artificial dissipation is not as high in the current version of CMPTBL.
Results with the lower values of ¢, are shown in Figure 9. The slope of the mean velocity and

temperature changes significantly at the wall. With the decrease in c,, the SGS viscosity is

reduced, which leads to higher values for u/,,. Similar results were found for the structure

rms*
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fuhction SGS model and results are shown in Figure 10. The constant ¢, was lowered by
30% from 0.30 to 0.21 before numerical stability became an issue.

As the proper value for this constant is not known for supersonic, wall-bounded turbu-
lent flows, the results of these temporal simulations can be used as a guide in the spatial
simulations.

Figure 11 shows results from the temporal LES of supersonic turbulent flow over a flat
plate at M, = 4.5. Shown is a constant density surface at one instant in the simulation
using the compressible Smagorinsky SGS model. The simulation appears to be modeling
the important physics of the boundary layer as evidenced by the similarity of certain flow
features to those observed in experiments. Horseshoe-shaped structures, visible in the fig-
ure, are almost identical to structures found in incompressible boundary layers (see, e.g.
Robinson, 1991) and are very similar to those observed in compressible flows where much
less experimental information is available (Spina et al., 1991). Additional visualization of
low momentum fluid near the wall, as shown in Figure 12 indicates low-speed streaks and
shows regions of these streaks lifting away from the wall in the vicinity of the horseshoe-
like structures, as observed experimentally. In Figure 13, contours of density at a spanwise
plane in the boundary layer are shown, convecting with 0.85U, which is the approximate
convection speed of large-scale motions. Superimposed are velocity vectors. Low density
fluid is lifted up from the wall and local shear layers are observed away from the wall that
are associated with the low-density structures. The downstream “bulge” is in early stages of
development as depicted by the strong shear layers seen on the upstream side. The results

are in qualitative agreement with incompressible motions.

5.2 Direct Numerical Simulation of Gortler Flow

Counter-rotating streamwise vortices are observed in transitional and turbulent bound-
ary layers and play an important role in the dynamics governing the dynamics governing
the growth, breakdown, and transition to turbulence. The streamwise vortices develop in
boundary-layer flow over a concave wall due to the imbalance of the centrifugal forces and
the radial pressure gradient as first predicted by Gortler (1940). As this Gortler instability
is a common phenomena in various flows involving curved boundaries, it was chosen to be

our validation case for the numerical method developed to date.

The geometry and flow conditions closely approximate the incompressible experiments of
Swearingen and Blackwelder (1987). A sketch of the streamwise vortices developing on a

concave wall is shown in Figure 14. The spanwise wavelength of the vortices is denoted by
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A in the figure. The governing nondimensional parameter is Gortler number defined by

U8 |6 /]
Gog = T\/; = Re”\/;

where 0 is the momentum thickness, U, is the freestream velocity, R is the radius of cur-
vature, and v is the kinematic viscosity. In contrast to the experiments, the simulations
were performed at My, = 0.5 in order to validate the code at subsonic Mach numbers. The
radius of curvature is R = 3.2 m, the freestream velocity is Uy, = 174 m/s, the freestream
temperature is T = 300 K, the unit Reynolds number per meter is Re = 3.2 x 10° m~1,
and the streamwise length of the computational domain is L = 251 cm. The spanwise wave-
length is chosen to match the experimentally observed wavelength, A = 2.3 cm. The flow
is unstable for Gog > 0.3 and the critical value for transition to turbulence occurs between
6 < Gog < 10 or 78 em < z < 152 em. The disturbance is introduced into the computational
domain at the inflow boundary through the introduction of perturbations in the spanwise
and wall-normal velocities.

The grid for this direct simulation was generated using MACGS, with constant stretching
in the streamwise direction and constant spacing in the spanwise direction. A small, con-
stant rate stretching is used in the wall normal direction. The computational grid is shown in
Figure 15. The grid is 104 x 61 x 31. Curvature starts at the leading edge and the computa-
tional domain extends from 5 em upstream of the leading edge to 251 cm downstream of the
leading edge along the surface. The spanwise extent of the domain is 2.3 em corresponding
to one wavelength.

The initial stages of this instability exhibit the expected exponential growth in the stream-
wise direction. Figure 16 shows the downstream growth of the amplitude of the spanwise
velocity near the wall at a value of y* =~ 10. The disturbance has propagated to 110 cm and
the flowfield downstream of this location is not yet developed.

Normal profiles of the mean streamwise velocity at five downstream locations are shown
in Figure 17 for spanwise locations corresponding to a peak and a valley region. A ‘peak’ is
the region where u'(z) is a maximum and U(z) is a minimum. A noticeable distortion of the
mean laminar flow is observed in the figure. The peak region shows a velocity defect and
the valley region shows an increase in the mean velocity. Concentrated regions of low- and
high-speed fluid are produced and the boundary layer has a wavy appearance in the spanwise
direction. In the low-speed region at z = 80 cm, the mean velocity profile is inflectional in
the normal y direction. The inflectional profiles indicate the imminent onset of a tertiary
instability and the breakdown to turbulence. The mean streamwise profiles are in agreement
with the experiments of Swearingen and Blackwelder (1987), in which the inflectional profile
was observed also at z = 80 em.
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The low- and high-speed regions in the spanwise direction results in an alternating increase
and decrease in the thickness of the boundary layer. The calculated development of the
displacement thickness §* in the downstream direction for the low- and high-speed regions
is compared with the laminar growth in Figure 18. Also shown are the measurements of
Swearingen and Blackwelder. In the low-speed region, é* increases dramatically near z =
40 cm. A corresponding decrease in §* is observed in the high-speed region. Again, the
Gortler instability has reached about z = 110 cm in the simulations. Overall, the agreement
between the calculations and the experiments is quite good.

The growth of the vortex system is illustrated in Figure 19. Iso-contours of the streamwise
velocity are shown at several downstream locations. Also shown is a comparison with the
experiments of Swearingen and Blackwelder at the same locations. Initially the disturbances
are linear and the boundary layer appears unperturbed, but is quickly modified downstream,
as the disturbance becomes non-linear and the influence of the counter-rotating vortices
is evident. As low-momentum fluid is pumped away from the wall between vortices, the
boundary layer and on either side of the domain the boundary layer is thinned due to the
induction of fluid towards the wall. The comparison between the direct numerical simulations
and the experiments is qualitatively similar. However, it appears that the development of
the Gortler vortices in the simulations is delayed 10 — 20 cm relative to the experiments. This
result is not unexpected because factors present in the experiment, such as surface roughness
and possibly larger amplitude disturbances, will cause the boundary layer to be less stable.

Streamwise vortices initiated by the Gortler instability exist in the presence of a strong
mean gradient of the streamwise velocity U(y). Between the two vortices, the induced
motion removes low-momentum fluid away from the wall. At one-half wavelength away in
the spanwise direction, the vortices pump high-speed fluid towards the wall. The counter-
rotating vortices are illustrated in Figure 20, which shows contours of spanwise velocity. The
low-speed regions that result from this lift-up of low-momentum fluid develop inflectional
velocity profiles as shown in Figure 17.

Although these simulations have not yet reached a fully turbulent state, at the time of
this report the Gaortler instability is still proceeding downstream. It is anticipated that the
final breakdown to turbulence will occur.

6 SUMMARY

The objective of this work has been to develop a DNS capability for compressible, non-
canonical wall-bounded flows which is directly applicable to actual flight vehicles. A signif-
icant part of this effort was placed on the development of the numerical algorithm that is

used to perform DNS of compressible, turbulent flows over bodies with surface curvature.
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Much of the work has therefore focused on resolving issues necessary in formulating the
numerical method. A second-order finite volume approach and both fourth-order and sixth-

order compact differences are available for the spatial derivatives. A third-order low-storage

- Runge-Kutta scheme is used for the time integration. The algorithm allows for general-

ized coordinates so that simulations about complex geometries can be performed. Extensive
testing was performed for two SGS models, the compressible Smagorinsky and structure
function models, to determine the effects of the SGS constant. The study reinforced the
need for high-order dissipation models in the simulation code, as the SGS viscosity also
behaves as an artificial viscosity for central differencing codes. The numerical method was
validated for flow over a concave surface at M., = 0.5 in which streamwise vortices develop
in the boundary-layer due to the Gortler instability. The geometry and flow conditions
closely approximated the experiments of Swearingen and Blackwelder (1987). The simula-
tions captured the essential features of the experiments in which counter-rotating vortices
developed near the wall. The laminar boundary layer on the concave wall rapidly becomes
three-dimensional as these streamwise vortices develop. The vortices grow downstream and
higher-momentum fluid is pulled towards the wall from the outer flow. The low-speed fluid
lying between the vortices induces low-momentum fluid away from the wall, leading to in-
flectional streamwise velocity profiles, in good agreement with the incompressible studies of

Swearingen and Blackwelder.
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Figure 1: Rms error in computing the steady, linear, viscous Burger’s equation at Re = 10 and ¢ = 1 using
second-order finite differences and fourth-order compact differences.
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Fi;ure 2: Spatial distribution of error for the steady, linear, viscous Burger’s equation at Re = 10 and ¢ = 1
using second-order finite differences and fourth-order compact differences for four different size uniform grids.
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with periodic boundary conditions using second-order finite differences and fourth-order compact differences.
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Figure 5: Comparison of exact solution with computed solution for the unsteady, nonlinear, viscous Burger’s
g second-order finite differences and fourth-order compact

equation at Re = 10, ¢ = 0.5, and b = —1 usin
differences and Az = 0.01.

o3
79_§
b
T ]
5973
2 ]
23
o " 3
- ! q
o3 i v
] o © Y
23 6 o t=10.0 (finite différences)
3 ©_t=10.0 (compact differences)
‘Q 0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: Spatial distribution of error for the unsteady, nonlinear, viscous Burger’s equation at Re = 10

¢ = 0.5, and b = —1 using second-order finite differences and fourth-order compact differences and Az = 0.01.
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Figure 8: Influence of modifications in the high-order differencing scheme on the mean flow, the SGS viscosity,
and the rms of the streamwise velocity using the compressible Smagorinsky SGS model (¢, = 0.15) for a
temporal LES of 8 My, = 4.5 turbulent boundary layer at Rey = 5400. Comparison is shown with the
experimental data of Coles (1953).
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Figure 9: Influence of the compressible Smagorinsky constant on the mean and fluctuating flow of a supersonic
turbulent boundary layer using the modified temporal LES code with the compressible Smagorinsky SGS
model. Comparison is also shown with the experimental data of Coles (1953).
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Figure 10: Influence of the compressible SGS constant on the mean and fluctuating flow of a supersonic
turbulent boundary layer using the modified temporal LES code with the compressible structure function

SGS model. Comparison is also shown with the experimental data of Coles (1953).
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Horseshoe-shaped structures are similar to those observed in

Figure 11: Constant density surface from a temporal LES of a supersonic turbulent boundary layer using
Figure 12: Low momentum (streamwise) fluid near the wall from a temporal LES of a supersonic turbulent

boundary layer using the compressible Smagorinsky SGS model. Low-speed streaks are seen lifiing away

the compressible Smagorinsky SGS model.
from the wall.

experiments.
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Figure 13: Velocity vectors and density contours identifying structural features in a Mach 4.5 turbulent
boundary layer.

Figure 14: Sketch of the streamwise vortices developing on a concave wall due to the Gortler instability
mechanism (from Swearingen and Blackwelder (1987)).
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Figure 15: Computational grid for calculation of the Gortler instability.

0.006 Y T T

0.004 J
£
3 0.002 r i
B

0.000 | i

-0.002 1 1 1

-60 0 50 100 150

x (cm)

Figure 16: Downstream growth of the amplitude of the spanwise velocity near the wall at yt ~ 10.
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Figure 18: Downstream development of the displacement thickness in the low-speed and high-speed region.
Also shown are the experimental measurements of Swearingen and Blackwelder (1987).
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Figure 19: For caption, see following page.
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Figure 19: Iso-contours of the mean streamwise velocity in the cross-stream (y,2)-plane
for several streamwise z locations. Also shown on the right side are the experimentally
determined contours of Swearingen and Blackwelder (1987).
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spanwise velocity at z = 100 cm showing the delelopment of counter-rotating




